Interrogation de Mathématiques nº 1 Durée : 2 heures

Exercice 1

Cet exercice est un Q.C.M. Pour chacune des questions, une seule des réponses a, b ou c est exacte.

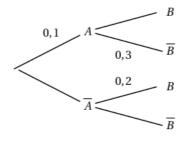
Les trois parties sont indépendantes. Aucune justification n'est demandée.

Compléter le tableau mis en annexe p.5 en indiquant la lettre correspondant à la réponse choisie pour chaque question. Une réponse exacte rapporte 0,5 point. L'absence de réponse ou une réponse fausse ne rapporte ni ne retire aucun point.

Partie I

- 1. Le prix d'un produit a successivement augmenté de 10 % puis baissé de 10 %. A l'issue des deux évolutions successives, le prix a finalement :
 - a. augmenté

b. baissé


- c. stagné
- 2. Le prix d'un produit a augmenté de 12% en un an. Le taux d'évolution mensuel moyen du prix est alors :
 - **a.** environ 0.95%
- **b.** exactement 1%
- c. environ 1.2%
- 3. En appliquant une réduction de 5 %, un article coûte 1 140 €, son prix avant réduction était de :
 - 1 200 € a.

1197€ b.

c. 1140,5 €

Partie II

On considère l'arbre de probabilités ci-dessous, dans lequel les évènements \overline{A} et \overline{B} sont les évènements contraires respectivement des évènements A et B.

- 1. La probabilité de l'évènement \overline{B} sachant A est :
 - **a.** 0,03

b. 0.3

c. 0,7

- 2. La probabilité de l'évènement B est :
 - **a.** 0,8

b. 0,9

0,25

- 3. La probabilité de l'évènement $A\cap B$ est :
 - **a.** 0,07

b. 0,7

c. 0,8

Interrogation 1 1/5

Partie III

Deux amis, Ludovic et Jean-Luc, disposent chacun d'un capital de $1\,500 \in$ qu'ils décident de placer. Ludovic opte pour un placement à intérêts simples au taux de $4\,\%$ l'an. Jean-Luc préfère placer son argent à intérêts composés au taux de $3,5\,\%$ l'an. Ils décident de réaliser une simulation sur tableur (voir ci-dessous) du capital acquis par chacun d'eux après n années de placement.

	A	В	С	D
1	Taux	Rang n de l'année	Capital de Ludovic	Capital de Jean-Luc
2	4,0 %	0	1 500,00	1 500,00
3	3,5 %	1	1 560,00	$1552{,}50$
4		2	1 620,00	1 606,84
5		3	1 680,00	1 663,08
6		4	1 740,00	1 721,28

1. Quelle formule peut-on entrer dans la cellule D3 qui, recopiée vers le bas, donnera le capital de Jean-Luc?

$$\mathbf{a.} = D^2^*(1+A^3)^B$$

b. =
$$D^2^*(1+A^3)^B3$$

- $\mathbf{c.} = D2*(1+\$A\$3)^B3$
- 2. Lequel des deux amis, Ludovic et Jean-Luc, disposera du capital le plus élevé après 8 années de placement?
 - a. Ludovic

b. Jean-Luc

c. Ils seront à égalité.

Exercice 2

Un magasin vend des appareils électroménagers. Une enquête statistique sur ses clients a montré que :

- 10 % des clients achètent un réfrigérateur;
- parmi les clients qui achètent un réfrigérateur, 30 % achètent aussi un four à micro-ondes;
- parmi les clients qui n'achètent pas de réfrigérateur, 15 % achètent un four à micro-ondes.

On choisit au hasard un client du magasin.

On considère les évènements R et M suivants :

R: « le client achète un réfrigérateur »

M : « le client achète un four à micro-ondes ».

Pour tout évènement E, on note p(E) sa probabilité et \overline{E} l'évènement contraire de E.

- 1. Compléter l'arbre pondéré mis en annexe p.5, résumant la situation.
- 2.(a) Définir, à l'aide d'une phrase, l'évènement $R \cap M$.
 - (b) Calculer la probabilité de l'évènement $R \cap M$.
 - (c) Montrer que la probabilité qu'un client choisi au hasard achète un four à micro-ondes est égale à 0,165.
- 3.(a) Définir, à l'aide d'une phrase, l'évènement $R \cup M$.
 - (b) Calculer la probabilité de l'évènement $R \cup M$.

Interrogation 1 2/5

Exercice 3

Anne et Bastien comparent les étrennes qu'ils reçoivent chaque année. En 2010, Anne a reçu $80 \in$ et Bastien $100 \in$. Chaque année, les étrennes d'Anne augmentent de $6 \in$ et celles de Bastien de 3 %. Pour tout entier n, on note u_n et v_n les étrennes reçues par Anne et Bastien l'année 2010 + n.

On a donc $u_0 = 80$ et $v_0 = 100$.

- 1.(a) Calculer les étrennes qu'ont reçues Anne et Bastien en 2011, puis en 2012.
 - (b) Donner la nature de la suite (u_n) . Justifier.

En déduire u_n en fonction de n.

(c) Donner la nature de la suite (v_n) . Justifier.

En déduire v_n en fonction de n.

- (d) À l'aide de la calculatrice, déterminer en quelle année Anne reçoit pour la première fois davantage que Bastien.
- 2. On note S_n et T_n la somme des étrennes reçues per Anne et Bastien de l'année 2010 jusqu'à l'année 2010 + n. On a donc $S_n = u_0 + u_1 + \cdots + u_n$ et $T_n = v_0 + v_1 + \cdots + v_n$. Calculer S_{15} et T_{15} .
- 3. On donne ci-dessous l'extrait d'une feuille de calcul réalisée à l'aide d'un tableur :

	A	В	С	D	E	F
1	n	Année	u_n	v_n	S_n	T_n
2	0	2010	80	100	80	100
3	1	2011				
4	2	2012				
5	3	2013				
:	:	:	:	:	:	:
:	÷	:	÷ :	:	:	÷
17	15	2025				

- (a) Quelle formule, à recopier sur la plage C4 :C17, peut-on entrer dans la cellule C3?
- (b) Quelle formule, à recopier sur la plage D4 :D17, peut-on entrer dans la cellule D3?
- (c) Quelle formule, à recopier sur la plage E4 :E17, peut-on entrer dans la cellule E3?

Exercice 4

Le nombre de joueurs à un jeu vidéo, en milliers, est modélisé par la fonction f définie sur $\mathbb R$ par :

$$f(x) = 65 \times 1,05^{x}$$

où x est le nombre de mois écoulés depuis le lancement du jeu.

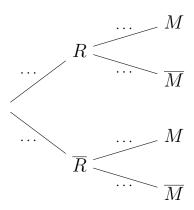
- 1. Justifier que la fonction f est une fonction exponentielle strictement croissante.
- 2. Au bout de combien de temps, en mois et en jours, atteindra-t-on 100 milliers de joueurs?

Interrogation 1 3/5

.

Interrogation 1 4/5

NOM Prénom:


Barème :

	Exercice 1	Exercice 2	Exercice 3	Exercice 4	
Total	4	5	8	3	

Annexe de l'exercice 1

Question	I.1	I.2	1.3	II.1	II.2	II.3	III.1	III.2
Réponse								

Annexe de l'exercice 2

Interrogation 1 5/5